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Abstract: To simulate a lightweight structure with integrated actuators and sensors, two-dimen-

sional finite elements are utilized. The study looks at the optimal location and active vibration con-

trol for a piezoelectric smart flexible structure. Intelligent applications are commonly used in engi-

neering applications. In computational mechanics, selecting the ideal position for actuators to sup-

press oscillations is crucial. The structure oscillates due to dynamic disturbance, and active control 

is used to try to reduce the oscillation. Utilizing an LQR and Hinfinity controller, optimization is car-

ried out to determine the best controller weights, which will dampen the oscillation. Challenging 

issues arise in the design of control techniques for piezoelectric smart structures. Piezoelectric ma-

terials have been investigated for use in distributed parameter systems (for example airplane wings, 

intelligent bridges, etc.) to provide active control efficiently and affordably. Still, no full suppression 

of the oscillation with this approach has been achieved so far. The controller’s order is then de-

creased using optimization techniques. Piezoelectric actuators are positioned optimally according 

to an enhanced optimization method. The outcomes demonstrate that the actuator optimization 

strategies used in the piezoelectric smart single flexible manipulator system have increased observ-

ability in addition to good vibration suppression results. 
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1. Introduction 

The terms “smart”, “intelligent”, and “adaptive” were first used to characterize the 

newly developing field of study that included incorporating electroactive functional ma-

terials into large constructions as in situ actuators and sensors in the middle of the 1980s 

[1–7]. In the past, electroactive materials were only employed in small- and micro-scale 

transducers and accurate mechatronics (electrical and mechanical) regulation systems. 

The common notion of intelligent, smart, and adaptable materials or constructs suggests 

the capability to be sharp, clever, fashionable, active, and advanced. In reality, however, 

real intelligence or thinking cannot be achieved by materials or structures due to the lack 

of artificial intelligence. Furthermore, the concept of a structure has been redefined as an 

adaptive or active (lifelike) multifunctional construct of an electronic system with essen-

tial abilities for diagnosis, self-sensing, and control [1–4]. Modeling and control are com-

mon approaches in manufacturing systems [8,9]. 

Control theory is a common approach for the optimization of materials in the engi-

neering field [10,11]. Additionally, robust control methods have been applied in smart 

materials in the past [12]. Herein, we make use of piezoelectric components. When quartz 

crystals were exposed to mechanical forces in 1880, the Curie brothers (Pierre and Jacques) 

detected the creation of electric fields on the crystals (the Greek word piezo means 
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“press”) [1–4]. In general, piezoelectricity connects the electric and elastic fields by elec-

tromechanical means. When a piezoelectric material reacts to mechanical strain or stress 

by generating electric charges or voltages, this is known as the explicit piezoelectric effect. 

When electric charges or fields are given to a material, the resulting mechanical stresses 

or strains have the opposite of the piezoelectric effect [5–7,13]. For sensor applications, the 

direct effect often serves as the foundation, while the opposite effect is used for precise 

manipulation and actuation in control uses. It is actuated. Based on designs and configu-

rations, or whether mechanical expansions or reductions are used with or without lever 

systems, the actuation stroke can range from nano- to micro- to millimeter scales. It should 

be noted that piezoelectricity is a first-order action at low electric fields that results in 

strain proportional to the electric field and displacement direction, dependent on the sign 

of the electric field [4–7,13]. Many researchers are interested in piezoelectric materials and 

their applications in mechanical structures [13–21]. In our paper, we investigate the opti-

mal placement of piezoelectric material in mechanical structures and their application in 

vibration suppression using Linear–quadratic regulator (LQR) control and Hinfinity (H∞) 

control methods. For example, the appropriate position could be selected by modeling the 

equipment or simulating the process [22]. Many important researchers have dealt with 

the problem of control in smart construction [23–25]. In this paper, the problem of topo-

logical optimization of structures is presented [25], while in our thesis the modeling of the 

vector and the complete suppression of oscillations are presented in detail. 

Designing control methods for piezoelectric smart structures presents difficult prob-

lems. To offer active control effectively and economically, piezoelectric materials have 

been researched for application in distributed parameter systems. Distributed sensors and 

actuators made of piezoelectric materials with adaptive qualities can be utilized to actively 

regulate dynamic systems. In this essay, we discuss the key considerations that structural 

control engineers must make while developing trustworthy control methods for evaluat-

ing resilience, optimum placement, and structural modeling under uncertainty. 

Suppression of vibrations under dynamic and uncertain loading is a very serious en-

gineering problem. Vibrations are important in engineering systems, as they are con-

nected with the fatigue of the materials, which leads to catastrophic failures and the end 

of life for parts. The application to simpler models allows the application of advanced 

control techniques since the controller presented is of order 36. All simulations have been 

completed in Matlab with advanced programming techniques. 

In this work, we achieve full suppression of oscillations with two control strategies, 

the Hinfinity control and the LQR. First, a smart structure is modeled with integrated pi-

ezoelectric elements that act as both sensors and actuators. Afterward, an optimal place-

ment is made in their place. Modeling uncertainties as well as measurement noise are 

taken into account, and then advanced control techniques are applied. The results are pre-

sented both in the time domain and in the frequency domain. The following are the ben-

efits of this work: 

- Modeling of intelligent constructs execution of control in oscillation suppression. 

- Uncertainties in dynamic loading. 

- Measurement noise. 

- Appropriate selection of weights for complete suppression of oscillations. 

- Using various choice places to stifle oscillations. 

- Results in the frequency domain as well as the time-space domain.  

- Introduction of the uncertainties in the construction’s mathematical model. 

2. Modeling 

This work deals with the reduction of oscillations using piezoelectric and advanced 

control techniques. Two cases of piezoelectric placement are taken. In Figure 1 (the first 

case), the actuators have been placed alternately, i.e., in positions 2 and 4. In Figure 2 (the 

second case) the actuators have been placed at the end of the beam and concentrated in 



Vibration 2023, 6 977 
 

 

positions 3 and 4, i.e., in the second half. The sensor output will be used for control actions 

[26]. The literature compared data-driven choices vs. simulation-based solutions [27–29]. 

 

Figure 1. (The first case), the actuators have been placed alternately, i.e., in positions 2 and 4. 

 

Figure 2. (The second case) the actuators have been placed at the end of the beam and concentrated 

in positions 3 and 4. 

The specific beam model simulated with two-dimensional finite elements has been 

chosen because it can be modeled and advanced control techniques can be applied to it 

that take into account modeling essentials such as unknown disturbances and 
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uncertainties of modeling. This particular model is a cantilever beam that can simulate an 

airplane wing or a bridge. With assumptions, the unknown disturbances may be the great 

force of the wind or the earthquake. In this work, the force of the wind is taken into ac-

count. In the literature given, relevant models have been used, but the results presented 

herein are much better, compared to the other reports, because the oscillations are com-

pletely suppressed. Suppression of vibrations under dynamic and uncertain loading is a 

very serious engineering problem. The application to simpler models allows the applica-

tion of advanced control techniques since the controller presented is of order 36. All sim-

ulations have been completed in Matlab with advanced programming techniques. 

The dynamical description of the system is given by: 

M�̈�(𝑡)  +  D�̇�(𝑡)  +  Kq(t) = fm(t) + fe(t) (1) 

where fm is the global external loading mechanical vector, K is the global stiffness matrix, 

M is the global mass matrix, and D is the viscous damping matrix. It is difficult to specify 

how structural damping is determined because there are so many variables involved. To 

keep things simple, the structural damping matrix D can be analyzed as either linearly 

combined mass or stiffness (Rayleigh damping), which is D = αM + βK, or as mass pro-

portional. Here α and β are calculated in terms of the first and second normal mode of 

vibration, α and β are 0.0005, and fe is the global control force vector resulting from elec-

tromechanical coupling effects. Rotations wi and transversal deflections ψi make up the 

unrelated variable q(t), or 

𝑞(𝑡) =

[
 
 
 
 
w1

ψ1

⋮
wn

ψn]
 
 
 
 

 (2) 

where n represents how many finite elements were employed in the analysis.  

Let us (as is customary) translate to a state-space control interpretation. 

X(t) = [
𝑞(𝑡)
�̇�(𝑡)

] 

�̇�(𝑡) = [
02n×n

M−1(fm(t) + fe(t)
] + [

�̇�(𝑡)

−M−1D�̇�(𝑡) − M−1K𝑞(𝑡)
] 

=[
02n×n

M−1(fm + fe)(t)
] + [

02n×2n

−M−1K

I2n×2n

−M−1D
] [

𝑞(𝑡)
�̇�(𝑡)

] 

=[
02n×n

M−1fm(t)
] + [

02n×n

M−1fe(t)
] + [

02n×2n

−M−1K

I2n×2n

−M−1D
] [

𝑞(𝑡)
�̇�(𝑡)

]. 

(3) 

Additionally, we define fe(t) = Fe × u(t) as, where (of size 2n × n) is the piezoelectric 

force for a unit put on the appropriate actuator,  

Where:  

𝐹𝑒 =

[
 
 
 
 
 
 
 
0
𝑐𝑝
0
0
0
0
0
0

0
−𝑐𝑝
0
𝑐𝑝
0
0
0
0

0
0
0

−𝑐𝑝
0
𝑐𝑝
0
0

0
0
0
0
0

−𝑐𝑝
0
𝑐𝑝 ]

 
 
 
 
 
 
 

 (4) 

and u(t) denotes the voltages on the actuators. Finally, the disturbance vector is the me-

chanical force d(t) = fm(t). Then, 
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�̇�(𝑡) = [
02n×2n I2n×2n

−M−1K −M−1𝐷
] 𝑥(𝑡) + [

02n×n

M−1Fe
∗] 𝑢(𝑡) + [

02n×2n

M−1 ] 𝑑(𝑡) 

= Α𝑥(𝑡) + Β𝑢(𝑡) + G𝑑(𝑡) 

=Ax(t) + [B G] [
𝑢(𝑡)
𝑑(𝑡)

] 

=Ax(t) + B̃�̃�(𝑡). 

(5) 

With the output equation (displacements are just measured), we can improve this. 

y(t) = [x1(t) x3(t) … xn−1(t)]T = Cx(t). (6) 

The parameters of our system are in Table 1 and Figures 3 and 4. To measure the state 

of the system, respective piezoelectric sensors are used. The voltage of the sensor outputs 

is proportional to the nodal movements of the corresponding elements. Therefore, the 

output of the system is given by Equation (6). In this example, four finite elements are 

used, so the measurements are possible. In addition, the table C is as follows: 

C = [1 0 0…0; −1 0 1 0…0; 0 0 −1 0 1…0; 0 0 0 0 −1 0 1…0].  

Table 1. Factors of the smart beam. 

Parameters Values 

L, for Beam length 1.00 m 

W, for Beam width 0.08 m 

h, for Beam thickness 0.02 m 

ρ, for Beam density 1600 kg/m3 

E, for Young’s modulus of the Beam 1.5 × 1011 N/m2 

bs, ba, for Pzt thickness 0.002 m 

d31 the Piezoelectric constant 280 × 10−12 m/V 

 

Figure 3. The actuators have been placed alternately, i.e., in positions 2 and 4 (the red color indi-

cates these positions, the blue color is the beam without piezoelectric patches and the white color 

is the remaining two positions 1 and 3, without actuator). 
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Figure 4. The actuators have been placed at the end of the beam and concentrated in positions 3 and 

4 (the red color indicates these positions, the blue color is the beam without piezoelectric patches 

and the white color is the remaining two positions 1 and 2, without actuator). 

3. Controller Synthesis 

The challenge is to model the uncertainty in both the external disturbance and the 

simulation model, while there is the optimal placement of the actuators. The benefits are 

that infinite control considers uncertainties, complete suppression of oscillations, and the 

results in the state space and the frequency domain. All simulations have been conducted 

with advanced design techniques. 

The aforementioned give ways for comparing and assessing controller performance 

as well as analytical difficulties. However, a controller that achieves a certain behavior in 

terms of the constructed singular value may be roughly synthesized. In this process iden-

tified as the (D, G-K) iteration [18,30], the challenge of locating an optimal controller Κ(s) 

such that μ(Fu(F(jω), Κs(jω)) ≤ β, ∀ω is transmuted into the difficulty of discovering trans-

fer function matrices D(ω) ∈ H and G(ω) ∈ H, such that, 

sup
ω

σ̅ [(
𝐷(𝜔)(Fu(F(jω),Κ(jω))𝐷−1(𝜔)

γ
− jG(ω)) (Ι + G2(𝜔))−

1

2] ≤ 1, ∀ω. (7) 

Unfortunately, this approach does not ensure even discovering local maxima. Nev-

ertheless, for complicated perturbations a technique known as the D-K iteration is acces-

sible (also executed in Matlab) [24,31,32]. It relates to the H∞ synthesis and frequently gen-

erates good outcomes. The initial point is the maximum value of μ in terms of the scaled 

singular value, where: 

μ(N) ≤ min
D∈D

σ̅(𝐷N𝐷−1). (8) 

The concept is to discover the controller that minimalizes the peak over frequency of 

its upper bound [17], namely, 

min
K

(min
D∈D

‖𝐷N(K)𝐷−1‖∞), (9) 

by changing between minimalizing ‖𝐷𝑁(𝐾)𝐷−1‖∞ with regard to either K or D (while 

keeping the other attached) [33–35]. 

1. K-step. Create a controller for the scaled issue. min
𝐾

‖𝐷𝑁(𝐾)𝐷−1‖∞with fixed D(s). 

2. D-step. Find D(jω) to minimalize at each frequency 𝜎(𝐷𝑁𝐷−1(j𝜔)) with fixed N. 

3. Fit the degree of each factor of D(jω) to a stable and the lowest phase transfer function 

D(s) and move to Step 1. 

4. Results 

4.1. Results in Simulation and Analysis of the Smart Structural Control 
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The presented problem takes as input the disturbance and measurement noise and 

gives as output the controller voltages and displacement measurements. The equations 

and structural diagrams presented analyze the equations used to model the specific prob-

lem of the beam and are used in programming using Matlab. 

Our goal is to identify the best transfer function N of the system.  

Deriving the input-output relations for the first model is helpful for this purpose. 

[
𝑢
e
] = F(s) [

𝑑
n
] ⇒ 𝑧 = F(s)w.  

u and e are the outputs (control, error), and d, n are the inputs (disturbance, noise) as 

illustrated in Figure 5. 
 

H(s)  K(s)  

u 

d 

x 

B 

G 
J 

C 

e 

y 

n 

 

Figure 5. Beam with a controller, disturbance input, error, and noise output. 

Where the beam is explained by the state space domain 

�̇�(𝑡)  =  Ax(t) + [B G] [
𝑢(𝑡)
𝑑(𝑡)

].  

In the frequency domain, our system is as follows:  

H(s) = (sI − A)−1, (10) 

and J is utilized to select those states that we are concerned with controlling (which may 

be altered from y). In the majority of the investigations, J will be: 

J = [

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

] (11) 

We start by redrawing Figure 5 successively. 

From Figure 6 it is easily seen that Tde (transfer function disturbance to error) is  

Tde = J × (I − HBKC)−1H × G. (12) 
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d  e 
H G 

K 

J 

B C 
 

Figure 6. Block diagram disturbance, errors. 

From Figure 7 it is seen that Tne (transfer function noise to error) is  

Tne = J × (I − HBKC)−1HBK. (13) 

 

n e 

H K J B 

C 
 

Figure 7. Block diagram noise, and errors. 

From Figure 8 it is seen that Tdu (transfer function disturbance to control) is 

Tdu = (I − KCHB)−1KCH × G. (14) 

 

d u 

H G K 

B 

C 

 

Figure 8. Block diagram disturbance, control voltages. 

From Figure 9 it is seen that Tnu (transfer function noise to control) is 

Tnu = (I − KCHB)−1K. (15) 

Combining we find, 

e = J × (I − HBKC)−1H × Gd + J × (I − HBKC)−1HBKn (16) 

and 

u = (I − KCHB)−1KCH × Gd + (I − KCHB)−1Kn (17) 

or, 

[
𝑢
e
] = [

(I − KCHB)−1KCHG (I − KCHB)−1K

J(I − HBKC)−1HG J(I − HBKC)−1HBK
] [

𝑑
n
] (18) 

and 
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[
𝑢
e
] = [

Fdu Fnu

Fde Fne
] [

d
n
] ⇒ 𝑧 = F(s)w. (19) 

To continue, we adjust the weighting appropriately and redesign Figure 5 to suit our 

specific problem: 
 

n u 
K 

H C B 
 

Figure 9. Block diagram noise, and control voltages. 

Subsequently, we create a new representation of Figure 10 in the form of a two-port 

diagram, similar to the layout shown in Figure 6 for comparison: 
 

H(s)  K(s)  

u 

nw  

d 

yn  

Wu(s)  

uw  

ew  

We(s)  

Wn(s)  

n 

dw  

Wd(s)  

x v 

G 

B 

J 

C 

e 

 

Figure 10. Block diagram with weights considered for the beam scenario. 

In Figure 11, x and v are auxiliary signals. 
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K 

H 

dw  

ew  

uw  

u  

z  

w  

P  

x  

Wd  

We  

Wu  

nw  Wn  

yn  

B 

G  

d  

C  

J  

v  

n  

e  

 

Figure 11. Two-port diagram for the beam problem. 

We are looking for: 

Qzw(s) = Pzw(s) + Pzu(s)K(s) (I − Pyu(s)K(s))−1Pyw(s) (20) 

such that 

z = Qzww = F(P, K)w. (21) 

We want to locate P(s). The required transfer performers are: 

ew = WeJx= WeJHv = WeJH(GWddw + Bu) = WeJHGWddw + WeJHBu, (22) 

uw = Wuu, (23) 

and 

yn = Cx + Wnnw = CHv + Wnnw = CH(GWddw + Bu) + Wnnw= 

CHGWddw + CHBu + Wnnw.  
(24) 

Combining all these gives 

[

𝑢𝑤

ew

𝑦𝑛

] = [

0 0 Wu

WeJHGWd 0 WeJHB
CHGWd Wn CHB

] [
𝑑𝑤

nw

𝑢
], (25) 

or 

[
𝑧
𝑦𝑛

] = [
Pzw Pzu

Pyw Pyu
] [

w
𝑢
], (26) 

where: 

Pzw = [
0 0

WeJHGWd 0
] ,  Pzu = [

Wu

WeJHB
] ,  Pyw = [CHGWd Wn],  Pyu = CHB. (27) 

An additional step is required, however, to acquire the Qij’s. We achieve this utilizing 

Equation (18) and noticing that: 

d = Wddw, n = Wnnw, ew = Wee, uw = Wuu.  
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Hence, 

[
𝑢
e
] = [

Wu
−1𝑢𝑤

We
−1ew

] = F(s) [
𝑑
n
] = F(s) [

Wd𝑑𝑤

Wnnw
] ⇒

[
𝑢𝑤

ew
] = [

Wu

We
] F(s) [

Wd

Wn
] [

𝑑𝑤

nw
]

,  

or 

[
𝑢𝑤

ew
] = [

Wu(I − KCHB)−1KCHGWd Wu(I − KCHB)−1KWn

WeJ(I − HBKC)−1HGWd WeJ(I − HBKC)−1HBKWn

] [
𝑑𝑤

nw
]. (28) 

Therefore, the matrices in 

z = Qzww or [
𝑢
𝑒
] = [

𝑄11 𝑄12

𝑄21 𝑄22
]  [

𝑑
𝑛
].  

Regarding the formulation in the state space, we express P as a form of natural par-

titioning: 

𝑃(s) = [

A B1 B2

C1 D11 D12

C2 D21 D22

] = [
Pzw(s) Pzu(s)

Pyw(s) Pyu(s)
], (29) 

(where the condensed format has been utilized), while the related form for Κ is: 

𝐾(s) = [
AK BK

CK DK
].  

Equation (29) describes the equations: 

�̇�(𝑡) = A𝑥(𝑡) + [B1 B2] [
w(t)

𝑢(𝑡)
]

[
𝑧(𝑡)

𝑦(𝑡)
] = [

C1

C2
] 𝑥(𝑡) + [

D11 D12

D21 D22
]  [

w(t)

𝑢(𝑡)
]

  

and 

�̇�K(t) = AKxK(t) + BKy(t)  

u(t) = CKxK(t) + DKy(t).  

To locate the matrices in question, we solve the feedback loop and apply the related 

equations (Figure 12):  

Κ 

P 

z w 

u y 

 

Figure 12. Open loop structure. 

To obtain the arrangement in state space form, we incorporate the outputs, inputs, 

states, and input/output to the controller: 
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�̇�𝐹 = A𝑥𝐹 + (G𝑑 + B𝑢), 𝑥 = IxF 

�̇�𝑢 = Au𝑥𝑢 + Bu𝑢,     𝑢𝑤 = Cu𝑥𝑢 + Du𝑢 

�̇�𝑒 = Ae𝑥𝑒 + BeJ𝑥,  ew = Ce𝑥𝑒 + DeJ𝑥 

�̇�𝑛𝑤 = Anw𝑥𝑛𝑤 + Bnwnw, n = Cnw𝑥𝑛𝑤 + Dnwnw 

�̇�𝑑𝑤 = Adw𝑥𝑑𝑤 + Bdw𝑑𝑤 , 𝑑 = Cdw𝑥𝑑𝑤 + Ddw𝑑𝑤 

y = Cx + n. 

(30) 

Let 

𝑥 =

[
 
 
 
 
𝑥𝐹

𝑥𝑢

𝑥𝑒

𝑥𝑛𝑤

𝑥𝑑𝑤]
 
 
 
 

,  𝑦 = 𝑦 ,  w = [
dw

nw
] ,  𝑧 = [

𝑢𝑤

ew
] ,  𝑢 = 𝑢.  

Replacing the internal signals d, n, e και x from 30 yields 

[
 
 
 
 
�̇�𝐹

�̇�𝑢

�̇�𝑒

�̇�𝑛𝑤

�̇�𝑑𝑤]
 
 
 
 

=

[
 
 
 
 

A 0 0 0 GCdw

0 Au 0 0 0
BeJ 0 Ae 0 0
0 0 0 Anw 0
0 0 0 0 Adw ]

 
 
 
 

[
 
 
 
 
𝑥𝐹

𝑥𝑢

𝑥𝑒

𝑥𝑛𝑤

𝑥𝑑𝑤]
 
 
 
 

+

[
 
 
 
 
GDdw 0

0 0
0 0
0 Bnw

Bdw 0 ]
 
 
 
 

[
𝑑𝑤

nw
] +

[
 
 
 
 
B
Bu

0
0
0 ]

 
 
 
 

𝑢,  

[
𝑢𝑤

ew
] = [

0 Cu 0 0 0
DeJ 0 Ce 0 0

]

[
 
 
 
 
𝑥𝐹

𝑥𝑢

𝑥𝑒

𝑥𝑛𝑤

𝑥𝑑𝑤]
 
 
 
 

+ 0 [
𝑑𝑤

nw
] + [

Du

0
] 𝑢,  

and 

𝑦 = [C 0 0 Cnw 0] 

[
 
 
 
 
𝑥𝐹

𝑥𝑢

𝑥𝑒

𝑥𝑛𝑤

𝑥𝑑𝑤]
 
 
 
 

+ [0 Dnw] [
𝑑𝑤

nw
] + 0𝑢. 

 

Therefore, the matrices are: 

A1 =

[
 
 
 
 

A 0 0 0 GCdw

0 Au 0 0 0
BeJ 0 Ae 0 0
0 0 0 Anw 0
0 0 0 0 Adw ]

 
 
 
 

,  B1 =

[
 
 
 
 
G𝐷𝑑𝑤 0

0 0
0 0
0 Bnw

Bdw 0 ]
 
 
 
 

,  B2 =

[
 
 
 
 
B
Bu

0
0
0 ]

 
 
 
 

,  

C1 = [
0 Cu 0 0 0

𝐷𝑒J 0 Ce 0 0
] ,  𝐷11 = 0,  𝐷12 = [

𝐷𝑢

0
], 

and 

 

C2 = [C 0 0 Cnw 0],  𝐷21 = [0 𝐷𝑛𝑤],  𝐷22 = 0.  

As can be observed, the state vector in this design has a size of 16 + 4 + 4 + 4 + 8 = 36. 

The controller model K(s)’s size will likewise be determined by this. This sum will be de-

creased in the proper sequence if the particular weight matrices are constant. Next, we 

suppose uncertainty in the M and K matrices of the form: 

K = K0(I + kpI2n×2nδK) 

M = M0(I + mpI2n×2nδM). 
(31) 

Furthermore, since, D = 0.0005(K + M), a suitable form for D is 
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D = 0.0005[K0(I + kpI2n×2nδK) + M0(I + mpI2n×2nδM)]= 

D0 + 0.0005[K0kpI2n×2nδK + M0mpI2n×2nδM]. 
 

On the other hand, since in general, 

D = αK + βM.  

To keep things simple, the structural damping matrix D can be analyzed as either 

linearly combined mass or stiffness (Rayleigh damping), in here α and β are calculated in 

terms of the first and second normal mode of vibration, α and β are 0.0005. D could be 

stated similarly to K, M, as 

D = D0(I + dpI2n×2nδD).  

In the pertinent matrices, we inject uncertainty in the form of proportion deviation. 

Since length can be accurately measured, this equation for uncertainty is appropriate in 

our situation. Uncertainty is more probable to result from terms besides the primary ma-

trices. Here it will be assumed that: 

║Δ║∞ =
def

‖[
Ιn×nδΚ 0n×n

0n×n Ιn×nδΜ
]‖

∞

 < 1.  

Hence, mp and kp are employed to scale the proportion value and the zero subscript 

represents nominal values. 

(It is prompted that for matrix Αn×m the norm is determined via 

║A║∞= max
1≤j≤m

∑ |aij|
n

j=1
). 

With these designations Equation (1) becomes 

M0(I + mpI2n×2nδM) �̈�(𝑡) + K0(I + kpI2n×2nδK)q(t) + [D0 + 0.0005[K0kpI2n×2nδK + M0mpI2n×2nδM]] �̇�(𝑡) = fm(t) + fe(t) 

⇒M0�̈�(𝑡) +D0�̇�(𝑡) + K0q(t)= 

−[M0mpI2n×2nδM�̈�(𝑡) + 0.0005[K0kpI2n×2nδK + M0mpI2n×2nδM] �̇�(𝑡) + K0kpI2n×2nδKq(t)] + fm(t) + fe(t) 

⇒M0�̈�(𝑡) + D0�̇�(𝑡) + K0q(t) = D̃𝑞𝑢(𝑡) + fm(t) + fe(t), 

(32) 

where: 

𝑞𝑢(𝑡) = [

�̈�(𝑡)

�̇�(𝑡)
𝑞(𝑡)

]

�̃� = −[M0mp K0kp] [
I2n×2nδΜ 02n×2n

02n×2n I2n×2nδΚ
]  [

I2n×2n 0.0005I2n×2n 02n×2n

02n×2n 0.0005I2n×2n I2n×2n
] =

= G1 ⋅ Δ ⋅ G2.

  

Writing 32 in state space form gives 

�̇�(𝑡) = [
02n×2n I2n×2n

−M−1K −M−1D
] 𝑥(𝑡) + [

02n×n

M−1fe
∗] 𝑢(𝑡) + [

02n×2n

M−1 ] 𝑑(𝑡) + [
02n×6n

M−1G1 ⋅ Δ ⋅ G2
] 𝑞𝑢(𝑡) 

= Α𝑥(𝑡) + Β𝑢(𝑡) + G𝑑(𝑡) + GuG2𝑞𝑢(𝑡).  

 

In this approach, we consider the original matrices’ uncertainty as an additional un-

certainty factor. To convey our system in the form of Figure 4, consider Figure 13. 
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K(s) 

u 

dw  

y nw  

B 

G 

C 

J 

ew  

Gu 

pu  qu  

β α 

E2 

γ  

Η(s) 

Wd 

d 

Wu 

uw  We 

x 

Wn 

n 

E1 

Δ 

e 

G2 

1/s 

A 

 

Figure 13. Uncertainty block diagram. 

The matrices E1, and E2 are used to extract: 

𝑞𝑢(𝑡) =
def

[

�̈�(𝑡)
�̇�(𝑡)

𝑞(𝑡)
].  

Since 

γ = [
�̇�(𝑡)
�̈�(𝑡)

] and β = ∫ [
�̇�(𝑡)
�̈�(𝑡)

] dt = [
𝑞(𝑡)
�̇�(𝑡)

],  

appropriate choices for E1 and E2 are: 

E1 = [

02n×2n I2n×2n

I2n×2n 02n×2n

02n×2n 02n×2n

] ,  E2 = [

02n×2n 02n×2n

02n×2n 02n×2n

I2n×2n 02n×2n

].  

The idea is to find an N such that: 

[

𝑞𝑢

ew

𝑢𝑤

] = N [

pu

𝑑𝑤

nw

] ,  N = [

Npuqu
Ndwqu

Nnwqu

Npuew
Ndwew

Nnwew

Npuuw
Ndwuw

Nnwuw

] = [
N11 N12

N21 N22
],  

or in the notation of Figure 4, 

[
𝑞𝑢

w
] = N [

pu

𝑧
].  

Now Ndwew
, Nnew

, Ndwuw
, and Nnwuw

are known from Equation (28). For the rest, we 

will employ a method identified as “pulling out the Δ’s”. To this end, we split the loop at 

points pu, and qu (which will be employed as extra inputs/outputs correspondingly) and 

use the auxiliary signals α, β, and γ. 

To obtain the transfer function Ndwqu (from dw to qu): 

qu = G2(E2β + Ε1γ) = G2(E2 
1

s
  + Ε1)γ 

γ = GWddw + Bu + A
1

s
γ = GWddw + BKC

1

s
γ +  A

1

s
γ ⇒ γ = (Ι − BKC

1

s
 − A

1

s
)−1GWddw. 

 

Hence, 

Ndwqu = G2(E2
1

s
 +  Ε1)(Ι − BKC

1

s
 − A

1

s
)−1GWd.  
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Now, Npuqu
, Npuew

, and Npuuw
 are similar to Ndwqw

 Ndwew
, and Ndwuw

 with GWd 

replaced by Gu, i.e., 

Npuqu
 = G2(E2

1

s
 +  Ε1)(Ι − BKC

1

s
 − A

1

s
)−1Gu,  

Npuew
= WyJH[I + B[K(I − CHBK)−1CH]Gu,  

Mpuu  w
 = WuK(I − CHBK)−1CHGu.  

Ultimately, to find Nnwqu
 

qu = G2(E2β + Ε1γ) = G2(E2
1

s
 + Ε1)γ 

γ = Bu + A
1

s
γ = BK(Wnnw + y) +A

1

s
γ = BKWnnw + BKC

1

s
γ + A

1

s
γ  

⇒γ = (Ι − BKC
1

s
 − A

1

s
)−1ΒΚWnnw. 

 

Hence, 

Nnwqu
 = G2(E2

1

s
 +  Ε1)(Ι − BKC

1

s
 − A

1

s
)−1ΒΚWn.  

Collecting all the above yields the transfer function of the structure N: 

[
 
 
 
 G2 (E2

1

s
+ E1) (I − BKC

1

s
− A

1

s
)
−1

Gu G2 (E2

1

s
+ E1) (I − BKC

1

s
− A

1

s
)
−1

GWd G2 (E2

1

s
+ E1) (I − BKC

1

s
− A

1

s
)
−1

BKWn

WeJH[I + BK(I − CHBK)−1CF]Gu WeJ(I − HBKC)−1HGWd WeJ(I − HBKC)−1HBKWn

WuK(I − CHBK)−1CFGu Wu(I − KCHB)−1KCHGWd Wu(I − KCHB)−1KW ]
 
 
 
 

. (33) 

Having acquired N for the beam problem, all recommended controllers K(s) can be 

compared utilizing the constructed singular value relations. The above operations were 

calculated to find the transfer function (N) which is used in programming in the Matlab 

programming tool. 

4.2. Results for the Open Loop (Initial Condition without Control) 

The open loop system is displayed in Figure 14. Using Equations (2) and (3) the trans-

fer function from disturbance to position is 

Ho(s) = C(sI − A)−1G. (34) 

 

Ho(s )  

d y 

beam 

disturbance 
 

Figure 14. Block diagram for the open loop. 

The system is stable with the e-values of A at 
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1.0 × 100.007 × 

[−3.497882663196082 

−1.371177496104841 

−0.546611094980835 

−0.215249175898536 

−0.061335753206233 

−0.015936656985647 

−0.001837409669158 

−0.000026475315963 + 0.000099444326281i 

−0.000026475315963 − 0.000099444326281i 

−0.000224428822398 

−0.000202541835285 

−0.000200654281462 

−0.000200186003921 

−0.000200011436140 

−0.000200029176256 

−0.000200073204937]. 

 

Firstly, we note that the A matrix is badly conditioned with condition number c= 

5.62×10−0.013. This means some preconditioning would be beneficial to sensitive calcula-

tions (like pole placement). A solution to this issue is to stabilize the system matrix. Matlab 

delivers the routine [36–38] [T, S] = balance(A) which creates a diagonal alteration matrix 

T whose elements are integer powers of 2, and matrix B such that 

A = TST−1.  

As a result, some of the bad conditioning is transferred to T. Letting 

z = T−1x⇒x = Tz,  

Equation (3) in the frequency domain, becomes: 

 Tz(𝑡) = AT𝑧(𝑡) + B𝑢(𝑡) + G𝑑(𝑡)

⇒ 𝑧(𝑡) = T−1AT𝑧(𝑡) + T−1B𝑢(𝑡) + T−1G𝑑(𝑡)

 =S𝑧(𝑡) + B̂𝑢(𝑡) + Ĝ𝑑(𝑡).

  

Another problem arises from the very small size of the minimum eigenvalue which 

defines the minimal time constant of the system, which in turn dictates sampling intervals 

used in simulations. These sampling intervals should be smaller than the minimum time 

constant. When this happens, arrays involved for example in lsim simulations become no-

ticeably big, and particular care must be taken if the simulation time is large. Also, the 

system is both manageable and noticeable (in fact the system is both controllable and ob-

servable with fewer inputs and measurements). A probable measure of the difficulty of 

regulating the system is the frequency-dependent condition number κ(jω), defined by 

κ(jω) =
σ̅(Ηο(jω))

σ
¯
(Ηο(jω))

.  
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A high condition number implies that the system is “close” to losing its full rank, i.e., 

close to not fulfilling the property of operational controllability (that is the ability of the 

output to follow any preassigned trajectory over a provided time interval). Values close to 

1 are desirable. Figure 15 shows the condition number for our system. 

 

Figure 15. Condition number of the system. 

As can be seen, the condition number is rather high at low frequencies, indicating 

that at those frequencies the system would be rather difficult to control [17,39,40]. This 

suggests that balancing would also be beneficial in this respect. 

Responses to various inputs are in Figures 16–18. These are Matlab simulations. 

These are simulations prior to applying the control in the beam. They are the initial con-

ditions. 
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Figure 16. Responses for unit mechanical force for every node of the structure. 

 

Figure 17. Responses for unit electrical force for every node of the structure. 
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Figure 18. Responses for unit white noise for every node of the structure. The curves almost coin-

cide; thus, the different curves cannot be clearly distinguished in the graphs. 

In Figure 16 we see the responses of the structure for unit mechanical load 1 Ν, at 

each node of the model separately. Figure 17 shows the responses of the structure for unit 

electric 1 Volt charge while Figure 18 is for unit white noise. In this work, we achieve full 

suppression of oscillations with two control strategies, the Hinfinity control and the LQR. 

First, a smart structure is modeled with integrated piezoelectric elements that act as both 

sensors and actuators. Afterward, an optimal placement is made. Modeling uncertainties 

as well as measurement noise are taken into account, then advanced control techniques 

are applied. The results are presented both in the time domain and in the frequency do-

main. 

4.3. Results with LQR Control 

It is commonly known [41] that a controller must have a zero at infinity (i.e., integrate) 

to completely remove continuous input disturbances. An integrator’s role as a disturbance 

estimator is another helpful interpretation. Consequently, we do not anticipate an LQR 

controller to have a zero steady-state error. The structure of LQR control with diminished 

order observer is revealed in Figure 19. 
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Figure 19. LQR controller with a state estimator. 

Here, 

K = lim
t→∞

K(t),  

where: 

 u(t) = −K(t)�̂�(𝑡)  (35) 

minimalizes the weighted performance index of 

J = ∫ (�̂�T(𝑡)Q�̂�(𝑡) + 𝑢T(𝑡)R𝑢(𝑡))dt
∞

0
,  

and Q and R are design weight matrices.  

The necessary equations are: 

[
C
T
]
−1

= [P M], T arbitrary 

[
CAP CAM
TAP TAM

] = [
Â11 Â12

Â21 Â22

] [
CB
TB

] = [
B̂1

B̂2

] 

F = Â22−LÂ12, H = FL + Â21−LÂ11, G = B̂2−LB̂1, N = P+ML 

 

ẇ(t) = Fw(t) + H𝑦(𝑡) + G𝑢(𝑡), (36) 

and 

�̂�(𝑡) = Mw(t) + N𝑦(𝑡). (37) 

Here matrix L is chosen to regulate: 

�̇�(𝑡) = [
Α 0
J 0

] 𝑧(𝑡) + [
Β
0
] v(t) (38) 

and 



Vibration 2023, 6 995 
 

 

�̇̃�(𝑡) = (Â22 − LÂ12)�̃�(𝑡). (39) 

The calculation is carried out by specifying the pole positions λL [42].  

To compare structured μ values for the overall system, we need to express the LQR 

controller as a transfer function. 

Let us find �̂�(𝑠) using Equation (37). 

Form Equation (36), 

ẇ(t) = Fw(t) + 𝐻𝑦(𝑡) + G𝑢(𝑡) ⇒ sw(s) = Fw(s) + H𝑦𝑛(𝑠) + G𝑢(𝑠) (40) 

and  

⇒ w(s) = (sI − F)−1[H𝑦𝑛(𝑠) + G𝑢(𝑠)]. (41) 

To find the input-output relation for the LQR controller use 41, 

𝑢(s) = −K{[N + M(sI − F)−1H]𝑦𝑛(𝑠) + M(sI − F)−1G𝑢(𝑠)} 

⇒ [I + KM(sI − F)−1G]𝑢(𝑠) = −K[N + M(sI − F)−1H]𝑦𝑛(𝑠) 
 

⇒ 𝑢(𝑠) = −[I + KM(sI − F)−1G]−1K[N + M(sI − F)−1H]𝑦𝑛(𝑠), (42) 

or 

𝑢(𝑠) = KLQ𝑦𝑛(𝑠), (43) 

where: 

KLQ = −[I + KM(sI − F)−1G]−1K[N + M(sI − F)−1H]. (44) 

With this relation, our LQR control structure can be depicted more compactly as 

shown in Figure 20, 

 

H(s)  KLQ(s)  
u 

yn 

d 

x v 
B 

G 

C 

y 

n 

 

Figure 20. Beam LQR control. 

Where H(s) = (sI − A)−1 is the beam’s transfer function. 

Matrix L is a design matrix. Its e-values are chosen so that the observer subsystem is 

about twice as fast as the observed plant. For our simulations we used 

ΛL = 1.0 × 100.007 × 

[2.7423 −0.4304 −0.0318 −0.000051 +  0.002𝑖 −0.000051 −  0.002𝑖 −0.00045 +  0.000053𝑖 −0.00045 −  0.000053𝑖 −0.00039 +  0.00001𝑖 −0.00039 −  0.00001𝑖 −0.000401 −0,0004003 −0.0004004]𝑇. 

 

These values were found by trial and error, given the bad numerical properties of the 

system. Furthermore, a robust pole placement algorithm, implemented in Matlab was 

used. 

In the simulations, artificial noise of amplitude equal to a random percentage (in the 

interval −1 to +1) of the measured values was added. The results of the simulations are 
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shown in Figures 21 and 22. The results presented are for the second case of actuator 

placement. In Figure 21 we can witness the dislocation of the free end of the beam with 

control (closed loop, green line) and without control (open loop, blue line) when the me-

chanical force is 10 N at the free end of the constructs. The displacement for the closed 

loop is almost zero. In Figure 22 we can notice the control voltages for the previous closed-

loop displacements. The piezoelectric limits are 500 Volts and the control voltages we used 

are 30 Volts. 

 

Figure 21. LQR reduced order observer controller: displacement at the end node. 

 

Figure 22. LQR reduced order observer controller: control effort. 

4.4. Results with Hinfinity Control 
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Various tests were performed. We expect to improve our performance if we exploit 

the frequency dependence of the signals [43]. 

Figure 23 shows the Bode diagrams of the diagonal elements of the weight matrixes 

of Hinfinity control, where the matrixes have been obtained after optimization. Nominal 

performance is depicted in Figures 24–28. The resulting controller is order 36. The max 

singular value for this controller is 0.074. In Figure 24b the performance of the controller 

is significant since it appears that there is a significant improvement in the error noise for 

frequencies above 1000 Hz. Moreover, Figure 24a shows the noteworthy enhancement of 

the effect of disturbances on the error up to the frequency of 1000 Hz. 

For all the next simulations a dynamical mechanical force is used, a real wind force 

which is taken from the Hellenic Mediterranean University in Heraklion, Crete in the 

energy laboratory of the Mechanical Engineering Department. In Figure 25 we can see the 

displacement for the first places of piezoelectric patches with and without control (Figures 

1 and 3). The blue line is the displacement without control (open loop), and the green line 

is the displacement with control (closed loop). In Figure 26 we have the same diagram for 

different places of the piezoelectric patches for all the nodes of the structures (Figures 2 

and 4). The results are excellent; the displacement is almost zero and the beam keeps in 

equilibrium. In Figure 27 we take the rotation for the second placement of the piezoelectric 

patches with (green line) Hinfinity control and without control (blue line). The results are 

excellent. In order to achieve them, the weights used had to be selected using optimization 

methods. Figure 28 shows the Singular values for the nominal and the worst case of the 

structures. 

 

Figure 23. Bode diagrams. 
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(a) (b) 

Figure 24. H∞ control: max singular value plots for the closed loop unweighted system’s error (a) 

disturbance to error, (b) noise to error. 

 

Figure 25. Displacement for the first place of piezoelectric patches. 
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Figure 26. Displacement for the second place of piezoelectric patches. 

 

Figure 27. Rotation for the second place of piezoelectric patches; Blue line—no control; Green 

line—Hinf. 
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Figure 28. Singular values for the nominal and the worst case of the structures. 

5. Discussion  

In this study, detailed modeling of the problem of smart beam oscillation suppression 

is performed. It is shown in an analytical way the introduction of uncertainty into the 

model and the creation of the transfer function for the specific problem. The results are 

obtained after programming in the Matlab platform and using the Simulink software tool. 

Control theory employing Hinfinity (H∞) techniques is used to synthesize controllers 

for stabilization with assured performance. By expressing the control problem as a math-

ematical optimization problem and then identifying the controller that resolves this opti-

mization, a control designer can employ Hinfinity techniques. In comparison to classical 

control techniques, H∞ techniques have the advantage of being easily adaptable to prob-

lems involving multivariate systems with cross-coupling between channels. Hinfinity 

techniques’ drawbacks include the level of mathematical sophistication required for suc-

cessful application and the requirement for a passably accurate model of the system to be 

controlled. Keep in mind that the resultant controller may not always be the best and is 

just the optimum solution with regard to the required cost function. The closed-loop im-

pact of a perturbation may be reduced using H∞ methods. Depending on how the problem 

is phrased, the impact will either be assessed in terms of stability or performance. The 

issue of control in intelligent structures has been addressed by a number of significant 

researchers [23–25]. While the modeling of the vector and the thorough suppression of 

oscillations are provided in detail in our research, the challenge of topological optimiza-

tion of structures is covered in this study [25]. 

The article has made a great contribution to the following: 

1. On the modeling of uncertainty in smart constructions. 

2. In the creation of advanced control techniques. 

3. In the complete suppression of vibrations under dynamic loading. 

4. Analytical explanation of the equations used in programming.  

5. Advanced programming techniques have been used to make the simulations. 

6. The model has been worked both in simulation and in advanced programming. 

7. It is not possible in one article to present both the modeling and the experimental 

results in such detail. For this reason, they will be presented in future research pa-

pers. 
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In this article, we wanted to emphasize the analysis and composition of the beam 

model in an analytical way and for this reason, all equations are given in detail. It is very 

difficult to give the experimental results as well because it will greatly increase the size of 

the work. 

6. Conclusions 

Combining LQR and Hinfinity control, this research investigates the ideal 

positioning of actuators in intelligent structures. The resistance of the Hinfinity controller 

to parametric uncertainty is seen in problems with vibration suppression. The benefits of 

active vibration suppression and robust control in the dynamics of intelligent structures 

are well illustrated in this work. Hinfinity control has a number of advantages when 

examining dependable control systems. Hinfinity control allows for the minimization of 

oscillations even for different places of actuators. Numerical modeling shows that the 

recommended methods for reducing vibrations in piezoelectric smart structures are 

successful. By demonstrating the use of Hinfinity regulation in both the frequency domain 

and state space, this essay explored the benefits of robust control in intelligent 

architecture. There are a number of papers considering the optimal placement of 

actuators. Most of them are neglected in the literature review [23–25]. 

To conclude, this work has contributed to the following:  

- Modeling of intelligent constructs execution of control in oscillation suppression.  

- Using various choice places to stifle oscillations.  

- Results in the frequency domain as well as the time-space domain.  

- Introduction of the uncertainties in the construction’s mathematical model. 

- The integration of smart structures using methods for optimal placement and active 

control.  

- Uncertainties in dynamic loading.  

- Measurement noise, appropriate selection of weights for complete suppression of os-

cillations. 

The application to simpler models allows the application of advanced control tech-

niques since the controller presented is of order 36. All simulations have been conducted 

in Matlab with advanced programming techniques. Experimental investigation was not 

of the interest of this paper. All equations are provided in detail because the goal of this 

research was to stress the analysis and composition of the beam model using a very ana-

lytical approach. Giving experimental data is highly challenging since it will significantly 

lengthen the process. 
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Nomenclature 

M Mass Matrix ψi(t) Displacement deflection  

K Stiffness Matrix x(t) The state vector of our system 

D Viscous damping Matrix y(t) Output vector of our system 

fe(t) piezoelectric force d31 Piezoelectric constant 

n Number of nodes in finite element formulation cp Piezoelectric constant 
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u(t) Control voltages of actuators  K(s) Hinfinity Controller of the system 

Fe Matrix with piezoelectric constant KlQ LQR controller of the system 

wi(t) Rotation deflection P(s) Augment Plant of the smart system  

μ Singular value e(t) The error of the system 

d(t) Disturbances of the system n(t) Noise of the system 

A, B, G, H Matrices of our system D, G-K D-K interaction in the frequency domain 

Tde, Tne, Tdu, Tnu 
The transfer function disturbance error, noise 

error, disturbance control, noise control 
We The error Weight for Hinfinity control 

Wn The noise Weight for Hinfinity control Wu The control Weight for Hinfinity control 

Wd The disturbance Weight for Hinfinity control N The transfer function for the smart system 

Δ The Uncertainty of the system δM t The Uncertainty terms for the mass matrix 

δκ The Uncertainty terms for the stiffness matrix kp, mp Numerical constant from zero to one 

J 
Matrix which is utilized to select states that we 

are concerned with controlling 
Q, R The weight vectors for LQR control 

κ(jω) Frequency-dependent condition number F Fractional transformation 
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